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Abstract 

Background Few countries recommend glial fibrillary protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-
L1) as a substitute for S100 astroglial calcium-binding protein B (S100B) in early detection of traumatic intracranial 
lesions in mild TBI (mTBI). This study aims to evaluate the classification agreement between S100B and GFAP/UCH-L1 
in a Scandinavian trauma cohort, to evaluate the performance characteristics of S100B and GFAP/UCH-L1 for detec-
tion of traumatic intracranial lesions, and lastly to evaluate the laboratory performance of the GFAP/UCH-L1 assay.

Methods Prospectively collected data from an unselected cohort of 379 adult trauma patients admitted to a level 
I trauma center at Aarhus University Hospital, Denmark, were retrospectively analyzed. Analyses were performed 
in the unselected cohort, in sub-cohort 1 (n = 218) i.e. patients with any evidence of TBI in their chart as well as in 
sub-cohort 2 (n = 105) i.e. patients with mTBI defined as Glasgow Coma Scale score ≥ 14, an injury severity score ≤ 15, 
and blood sampling within 6 h or 12 h after trauma. Plasma-samples were used for GFAP/UCH-L1 measurement 
and serum-samples were used for S100B measurement. Data analysis involved agreement analysis using Cohens 
kappa and sensitivity, specificity, positive predictive value and negative predictive value for each biomarker in each 
of the three cohorts. Lastly, levels of GFAP/UCH-L1 measured by the Alinity-I platform and the Simoa platform were 
compared.

Results Classification agreement between GFAP/UCH-L1 and S100B was high in all three cohorts, but Cohens kappa 
improved with increasing proximity to clinical biomarker use and reached an almost perfect identity in sub-cohort 2 
(0.70, 95% CI 0.62–0.92). S100b had a sensitivity and negative predictive value of 100% in sub-cohort 2, while GFAP/
UCH-L1 reached 100% across all three cohorts. The specificities for both S100B and GFAP/UCH-L1 were relatively low. 
Comparing GFAP/UCH-L1 levels between platforms revealed a low concordance with the Alinity-I platform measuring 
GFAP levels on average 65% lower and UCH-L1 levels 84% higher than the Simoa platform.

Conclusions In this study, S100B and GFAP/UCH-L1 had an almost perfect agreement for classification of mTBI 
patients and comparable diagnostic performances for detecting traumatic intracranial lesions. Our results therefore 
support GFAP/UCH-L1 as a feasible alternative to S100B for detecting traumatic intracranial lesions in mTBI.
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Background
Extensive research has been conducted to identify bio-
markers for detection of traumatic intracranial lesions 
after mild traumatic brain injury (mTBI). TBI is a het-
erogenous disorder that range from mild concussions to 
severe injuries with life-threatening intracranial lesions. 
The majority of TBIs are mTBI that presents with a vari-
ety of symptoms [1]. Roughly 7% of patients with mTBI 
develop a traumatic intracranial lesion, but less than 1% 
of these lesions requires prompt neurosurgical inter-
vention or lead to death [2]. While head computed 
tomography (CT) is the standard for rapid detection of 
intracranial lesions following moderate or severe TBI [3], 
the use of head-CT in mTBI is more complex. Despite 
clinical decision rules for head-CT following mTBI [4], 
non-adherence to guidelines is common leading to head-
CT without guideline-based indication [5, 6]. Use of bio-
markers as an additive to clinical decision rules might 
increase guideline-adherence, and thereby reduce unnec-
essary radiation exposure, emergency department time, 
and health care costs.

The Scandinavian Neurotrauma Committee (SNC) 
guidelines for management of minimal, mild and mod-
erate head trauma in adults recommend the use of S100 
astroglial calcium-binding protein B (S100B) as a screen-
ing tool for early detection of traumatic intracranial 
lesions in mTBI [7]. Single test of S100B can help deter-
mine the need for head-CT within 6 h of injury. The sen-
sitivity and negative predictive value of a S100B single 
test in detecting traumatic intracranial lesions in adults 
is 97–100% and 92–100%, respectively [8–10]. Yet, S100B 
cannot be used in pediatric head trauma, with concomi-
tant extracranial injuries or beyond 6 h after the injury, 
which challenge clinical implementation of S100B [7, 11]. 
The introduction of a combination test of glial fibrillary 
acidic protein (GFAP) and ubiquitin C-terminal hydro-
lase (UCH-L1) in mTBI have therefore gained much 
interest [12–16]. Both GFAP and UCH-L1 are detect-
ible within 1 h of injury with peak levels at 20 h and 8 h, 
respectively [13–16]. The sensitivity and negative predic-
tive value of the GFAP and UCH-L1 combination test 
in detecting traumatic intracranial lesions in adults is 
reported to be 97–100% and 99.6–100%, respectively [17, 
18]. After the US Food and Drug Administration (FDA) 
approved GFAP and UCH-L1 for clinical use in adults 
with mTBI to help determine the need for CT scan within 
12 h of injury [19], the French and Spanish guidelines for 
management of mTBI have incorporated the test [20, 21]. 

Only a preliminary study has evaluated the SNC guide-
line substituting S100B with GFAP [22]. Given limited 
Scandinavian data comparing S100B and GFAP/UCH-L1 
as early screening tools in TBI, the primary endpoint of 
this study was to evaluate the level of agreement between 
S100B and GFAP/UCH-L1 in a Scandinavian trauma 
cohort. The secondary endpoint was to evaluate the per-
formance characteristics of S100B and GFAP/UCH-L1 
for detection of traumatic intracranial lesions. The third 
endpoint was to evaluate the performance of the GFAP/
UCH-L1 assay.

Methods
Study cohort
This study was conducted on biobank material from the 
SURVIVE cohort [23, 24]. The SURVIVE cohort is an 
unselected cohort of 418 patients admitted to the level-
I trauma center at Aarhus University Hospital, Den-
mark, between March 2017 and February 2018. Patients 
aged ≥ 18 years fulfilling the Advanced Trauma Life Sup-
port criteria for trauma team activation were considered 
eligible for inclusion. Patients were excluded from the 
study if pregnant, dead upon arrival, declining/with-
drawing consent or if blood sampling proved impossible. 
Patients with multiple admission during the study period 
was only included once [23]. For the present study, 39 
patients were excluded due to insufficient material for 
either S100B or GFAP/UCH-L1 analysis (n = 36) or 
because of inconclusive GFAP/UCH-L1 results and insuf-
ficient material for reanalysis (n = 3). Patients with TBI 
were identified by the description in the medical records 
recorded before any CT-scans and/or secondary survey. 
Descriptions of trauma to the head or face, wounds or 
injuries to the head and/or face, confirmed or suspected 
loss of consciousness following a relevant trauma, amne-
sia for the trauma, and suspicion of concussions were 
considered TBI. Information from medical records were 
extracted independently by two medical doctors and any 
disagreement (70 patients) was cross-checked by a third 
doctor with competences in trauma care.

Clinical information
The SURVIVE cohort had clinical information collected 
retrospectively from the medical records and the local 
trauma registry. For the SURVIVE cohort, information 
on age, sex, time of hospital admission, advanced air-
way management on admission, and preexisting medical 
treatment was retrieved from the medical records, while 
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information on abbreviated injury score, time of injury 
and mechanism of injury was retrieved from the trauma 
registry. Time from injury to admission and Injury 
Severity Score (ISS) [25] were calculated based on this 
information.

For the present study, information on TBI, Marshall 
score and Glasgow Coma Scale (GCS) on admission was 
retrieved from medical records. In five patients, the GCS 
was not described in the admission chart. Three of these 
patients were obviously unaffected from the trauma and 
were assigned a score of 15. One was described as com-
pletely unresponsive on scene and assigned a score of 3. 
In the last case, a GCS could not be safely judged from 
the charts and the patients was excluded from analy-
sis involving GCS score. Patients intubated on admis-
sion were assigned last registered GCS score which was 
retrieved from the admission records or from the prehos-
pital records. Data on GCS were extracted by one medi-
cal doctor and cross-checked by another medical doctor 
with special competences in neurosurgery. The Marshall 
CT Classification score was assigned based on admission 
head-CT. The Marshall classification score range from 1 
to 6 i.e. a score of 1 is assigned to patients with no vis-
ible intracranial lesions, whereas patients with non-evac-
uated mass lesions are assigned a score of 6 [26]. Data on 
head-CT were evaluated by retrospective review of the 
trauma scan by a junior doctor with special competence 
in neurosurgery and verified by a senior consultant in 
neurosurgery.

Blood sampling
The SURVIVE cohort had blood samples collected from 
an antecubital vein or an arterial cannula by a certified 
laboratory technician. Samples were collected upon 
arrival to the trauma center, and 15 ± 3 and 72 ± 6 h after 
arrival. Serum, lithium heparin- and EDTA-anticoag-
ulated tubes (BD Vacutainer®, Becton Dickinson and 
Company, Franklin Lakes, NJ, USA) were used. Sam-
ples for routine biochemistry and hematology analysis 
were processed in our accredited laboratory according 
to standard procedures for clinical analysis. Samples 
for study analyses were process within 2 h of collection. 
Serum samples were allowed to clot for a minimum of 
30  min at 22–24  °C before centrifugation. All samples 
were centrifuged at 3000  g for 25  min at 22–24  °C and 
frozen at 80 °C until further analysis.

Laboratory analysis
Study laboratory analyses
The TBI® assay was established on our Alinity-i plat-
form (Abbott, Abbott Park, Illinois, USA). The assay 
is an automated panel analysis with an analysis time 
of 18  min using proprietary reagents to measure GFAP 

and UCH-L1 by chemiluminescence technology. At the 
cut (GFAP < 35.0  ng/L and UCH-L1 < 400.0  ng/L), the 
assay has a sensitivity of 96.7% (95% CI 91.7–98.7) and 
a negative predictive value of 99.4% (95% conficence 
interval (CI) 98.6–99.8) for detection of traumatic intrac-
ranial lesions on head-CT in adults with mTBI within 
12 h of injury [27]. The limit of detection is 3.2 ng/L and 
18.3 ng/L for GFAP and UCH-L1, respectively. Measure-
ment and linearity ranges are 6.1 to 42.000 ng/L for GFAP 
and 26.3 to 25.000  ng/L for UCH-L1. The intra-labora-
tory imprecisions for GFAP are 3.7% (level 25.9  ng/L), 
3.3% (level 508.6  ng/L), and 3.9% (level 31,225.4  ng/L), 
and for UCH-L1 4.1% (level 247.9  ng/L), 3.0% (level 
2047.3  ng/L), and 3.6% (level 15,310.9  ng/L). The refer-
ence intervals are 6.6 -70.9  ng/L for GFAP and 44.7 to 
226.8  ng/L for UCH-L1. EDTA-anticoagulated samples 
were thawed at 22–24 °C and centrifugated at 2000 g for 
5 min to remove debris. Samples were batched analyzed 
in random order over six days using one reagent LOT. 
The analysis was performed by two certified laboratory 
technicians at Aalborg University Hospital experienced 
in the Alinity-I analysis and blinded to any study infor-
mation. Company controls as specified above were used. 
Twenty-two controls at each level were analyzed during 
the study period and the imprecisions for GFAP were 
3.1% (level 24.1  ng/L), 2.5% (level 485.3  ng/L) and 2.1% 
(level 30,521.4 ng/L). The imprecisions for UCH-L1 were: 
2.0% (level 258.9  ng/L), 1.8% (level 2042.1  ng/L), 1.9% 
(level 15,133.0 ng/L). Levels of GFAP/UCH-L1 measured 
by the TBI® assay was compared with levels measured by 
Single Molecule Array (Simoa). These data were obtained 
from serum samples measured by the Neurology 4-plex 
assay B kit using a Simoa HD1 analyzer (Quanterix Corp, 
MA, USA). Details on this analysis has been published 
previously [24].

S100B was analyzed on a Cobas 8000 e602 module vali-
dated for routine clinical use. The analysis has an analysis 
time of 18 min and is performed on serum samples that 
requires a minimum 30 min pre-incubation. At the cut-
off (< 0.1 µg/L), the assay has a sensitivity of 98.8% (95% 
CI 96 to 100) and a negative predictive value of 99.7% 
(95% CI 99.1–100) for detection of traumatic intracranial 
lesions on head-CT in adults with mTBI within 6 h of the 
injury [28]. The limit of detection is 0.015 µg/L and the 
measurement range is 0.015 to 39 µg/L. In our laboratory, 
the analysis is under internal and external quality control. 
Its bias is − 1.9% at 0.19 µg/L and the intermediate preci-
sion is 3.3% at level 0.19 µg/L and 3.5% at level 2.43 µg/L. 
Serum samples were thawed at 22–24  °C and centrifu-
gated at 2000 g for 5 min to remove debris. The samples 
were loaded in random order as a batch in our fully auto-
mated laboratory and analyzed among routine samples 
over 16  days. The samples were handled by laboratory 
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technicians blinded to the study. Subsequently, the data 
were extracted from the laboratory information system.

Routine laboratory analyses
Hematologic parameters (Hemoglobin, hematocrit, leu-
kocytes, and platelets) and coagulation biomarkers (INR, 
APTT, d-dimer, fibrinogen, AT) were analyzed at the 
Department of Clinical Biochemistry, Aarhus University 
Hospital using validate routine clinical assays and accord-
ing to standard operating procedures in our accredited 
laboratory (DS/EN ISO 15189). All samples were ana-
lyzed within two hours of collection.

Statistics
Data are presented as absolute numbers with percent-
ages, means with standard deviation (SD), medians with 
interquartile ranges (IQR) or minimum and maximum 
values depending on the data distribution. All statistical 
analyses were performed in accordance with our pre-
study analysis plan, and presented with 95% confidence 
intervals (CI) when relevant. The primary endpoint was 
agreement between GFAP/UCH-L1 and S100B. Agree-
ment was evaluated by Cohens kappa [29] analysis in 
three cohorts with increasing proximity to clinical bio-
marker use. Kappa values range from − 1 indicating com-
plete disagreement to 1 indicating complete agreement. 
The first cohort consisted of the unselected cohort of 
trauma patients. Sub-cohort 1 consisted patients with 
any evidence of TBI in their chart. Sub-cohort 2 con-
sisted of mTBI patients defined by a GCS score ≥ 14, an 
ISS score ≤ 15, and blood sampling within 6  h (S100B) 
or 12  h (GFAP/UCH-L1) after trauma. The second-
ary endpoint was diagnostic performance of S100B and 
GFAP/UCH-L1 to detect traumatic intracranial lesions 
on head-CT. Sensitivity, specificity, positive predictive 
values and negative predictive values were calculated for 
each biomarker in each of the three cohorts. Sub-analy-
ses were performed to evaluate biomarker disagreement 
and determine component (GFAP or UCHL1) that trig-
gered a positive GFAP/UCH-L1 test. This evaluation 
was descriptively in a 3 × 3 table of positive/negative/
missing values of GFAP and UCH-L1 of patients with a 
positive head-CT. The third endpoint was an explorative 
comparison of quantitative levels of GFAP and UCH-L1 
measured by the Alinity-I platform and the Simoa plat-
form. This was done by Passing Bablok regression analy-
sis with Lin´s concordance correlation coefficient and by 
Bland–Altman plot analysis as recommended by Clinical 
& Laboratory Standards Institute (CLSI) [30]. All analysis 
were performed in STATA 18.0 and a p-value of. 0.05 was 
considered statistically significant.

Results
Study cohort
There were 379 patients enrolled in the unselected 
trauma cohort having blood samples available for bio-
marker analysis. Among patients in the unselected 
trauma cohort, 218 had evident TBI and 105 had mTBI 
defined by a GCS score ≥ 14, an ISS score ≤ 15. Detailed 
characteristics of the trauma cohort and the two sub-
cohorts are outlined in Table  1. In the unselected 
trauma cohort, 80.4% of patients presented with a GCS 
score of 14 or 15 and more than 70% of the patients had 
minor or moderate trauma only (ISS ≤ 15). From the 
unselected trauma cohort, 8 patients with a GCS < 14 
were not included in sub-cohort 2 due to spontane-
ous subarachnoid hemorrhage (n = 3), suicidal attempt 
by strangulation (n = 2), severe intoxications (n = 2), 
and transfer from a lower-level trauma center (n = 1). 
In all cohorts, more than 90% of the patients had a 
head-CT performed and positive head-CT were found 
in 35.8% and 16.2% of patients in sub-cohort 1 and 2, 
respectively. Median time from injury to admission was 
below one hour in all cohorts. Only few patients were 
admitted more than 6 or 12  h after their injury in the 
unselected trauma cohort and sub-cohort 1. Among 
patients in sub-cohort 2 with a traumatic intracranial 
lesion on head-CT, two (1.9%) patients required neuro-
surgical intervention i.e. a craniotomy due to an acute 
subdural hematoma and a decompressive craniectomy 
due to traumatic subarachnoid hemorrhage and edema. 
Two patients in sub-cohort 2 were intubated prehospi-
tally on a GCS 14 and GCS 15 for neuroprotective pur-
pose. Only one of these patients had a positive head-CT 
and had neurosurgical intervention performed.

Agreement
The agreement between GFAP/UCH-L1 and S100B 
was high in the three cohorts (Table 2). Cohens kappa 
improved with increasing proximity to clinical bio-
marker use and reached an almost perfect identity in 
sub-cohort 2. Patients with non-agreeing biomarker 
levels in each of the three scenarios are presented in 
Table 3. Generally, these patients had biomarkers levels 
close to the decision cutoffs. In the unselected trauma 
cohort, few of the S100B positive/GFAP/UCH-L1 nega-
tive patients had a head trauma described in the admis-
sion chart and these patients also had a low ISS score. 
Two patients with positive head-CT were not detected 
by the S100B assay in the unselected trauma cohort and 
sub-cohort 1. These were older (> 65 years) males how 
both had an ISS score of 25 and GCS of 3 and 4.
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Table 1 Characteristics of study cohort

Unselected trauma 
cohort (n = 379)

Sub-cohort 1 (n = 218) Sub-cohort 2 (n = 105)

Age, years, mean ± SD 46.2 ± 20.2 49.2 ± 21.1 46.1 ± 20.3

Sex

 Male, n (%) 255 (67.3%) 151 (69.3%) 67 (63.8%)

 Female, n (%) 124 (32.7%) 67 (30.7%) 38 (36.2%)

Glasgow Coma scale, n (%)

 14–15 304 (80.4%) 152 (69.7%) 105 (100%)

 9–13 35 (9.2%) 32 (14.7%) 0 (0%)

 3–8 39 (10.3%) 34 (15.6%) 0 (0%)

 Unknown 1 (0.1%) 0 (0%) 0 (0%)

Injury severity score, n (%)

 1–8 187 (49.3%) 98 (44.9%) 76 (72.4%)

 9–15 82 (21.6%) 45 (20.6%) 29 (27.6%)

 16–24 48 (12.7%) 35 (16.1%) 0 (0%)

 ≥ 25 51 (13.5%) 36 (16.5%) 0 (0%)

 Unknown 11 (2.9%) 4 (1.8%) 0 (0%)

Mechanism of injury, n (%)

 Fall 104 (27.4%) 74 (33.9%) 29 (27.6%)

 Traffic 124 (32.7%) 78 (35.8%) 40 (38.1%)

 Violence (incl suicide attempt) 26 (6.9%) 10 (4.6%) 6 (5.7%)

 Other (incl unknown) 125 (33.0%) 56 (25.7%) 30 (28.6%)

Antiplatelet medication, n (%) 25 (6.6%) 17 (7.8%) 5 (4.8%)

Anticoagulant medication, n (%) 22 (5.8%) 18 (8.3%) 7 (6.7%)

Advanced airway management, n (%) 47 (12.4%) 41 (18.8%) 2 (1.9%)

Time from injury to admission, minutes, median (IQR) 55.0 (38.2) 55.0 (39.0) 47.0 (34.0)

Admission delay > 6 h from injury, n (%) 7 (2.1%) 2 (1.0%) 0 (0%)

Admission delay > 12 h from injury, n (%) 5 (1.5%) 1 (1.0%) 0 (0%)

Head CT performed, n (%) 347 (91.6%) 216 (99.1%) 104 (99.1%)

Head-CT lesion, n (%) 81 (21.4%) 78 (35.8%) 17 (16.2%)

Marshall Score, n (%)

 1 266 (76.7%) 138 (63.3%) 87 (82.9%)

 2–4 57 (15.0%) 54 (24.8%) 15 (14.3%)

 5–6 24 (6.9%) 24 (11.1%) 2 (1.9%)

Biochemistry on admission

Hemoglobin, n (%) below reference

 Female ≤ 7.3 mmol/L 77 (20.5%) 47 (21.8%) 77 (6.7%)

 Male ≤ 8.3 mmol/L

Hematocrit, n (%) below reference

 Female ≤ 0.35 fraction 76 (20.5%) 49 (22.9%) 8 (7.7%)

 Male ≤ 0.4 fraction

Platelets, n (%) below reference

 Female ≤ 165 ×  109/L 25 (6.6%) 16 (7.4%) 4 (3.8%)

 Male ≤ 145 ×  109/L

International Normalized Ratio, n (%) above reference

 Female/Male ≤ 1.2 57 (15.1%) 38 (17.4%) 11 (10.5%)

Activated partial thromboplastin time, n (%) above reference

 Female/Male ≥ 29 s 23 (6.2%) 17 (8.1%) 3 (2.9%)
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Diagnostic performance
The diagnostic performance characteristics of GFAP/
UCH-L1 and S100B are presented in Table 2. The GFAP/
UCH-L1 had a slightly higher sensitivity and negative 
predictive value than S100B in the unselected trauma 
cohort and sub-cohort 1. Conversely, the specificity was 
slightly higher for S100B than for GFAP/UCH-L1 in 
these models. Yet, in sub-cohort 2 the analyses had com-
parable performances.

Assay evaluation
The distribution of positivity/negativity of the TBI® 
assay components (GFAP/UCH-L1) were evaluated in 
the unselected trauma cohort as well as in patients with 
positive head-CT. In both scenarios, positive TBI-assay 
test results occurred from single positivity of GFAP 
or UCH-L1 (Supplemental Tables  1 and 2). Quantita-
tive levels of each TBI-assay component were compared 
with levels measured by Simoa (Supplemental Fig. 1 and 
2). This revealed a low concordance (GFAP = 0.345 and 

UCHL1 = 0.153) and a high bias [GFAP = 0.35 (95% CI 
0.34–0. 37) and UCH-L1 = 1.834 (95% CI 1.82–1.86).

Discussion
This study demonstrates an almost perfect agreement 
between S100B and GFAP/UCH-L1 when applied on a 
Scandinavian trauma population. Additionally, it con-
firms S100B and GFAP/UCH-L1 to have comparable 
diagnostic performances for detecting traumatic intrac-
ranial lesions in adult mTBI patients. This supports 
GFAP/UCH-L1 as a feasible alternative to S100B in 
clinical decision-making in mTBI, but with less contrain-
dications, which may hold potential to increase mTBI 
guideline-adherence.

We performed a head-to-head comparison of the 
serum-based S100B single test and the plasma-based 
GFAP/UCH-L1 combination test in a Scandinavian 
trauma cohort by estimating classification agreement by 
Cohens Kappa. Our results revealed an almost perfect 
agreement that increased in sub-cohorts with proximity 

Tabel 3 Characteristics of patients with dis-agreeing samples in the three models analyzed

The unselected trauma cohort included all patients (n = 379). Sub-cohort 1 included patients with evident head trauma as described in the admission chart (n = 218). 
Sub-cohort 2 included patients with evident head trauma, ISS ≤ 15, GCS ≥ 14, and blood sampling within 6 h (S100B) or 12 h (GFAP/UCH-L1) from the injury (n = 105). 
Data presented as absolute numbers unless otherwise indicated. Abbreviations: SD: standard deviation; IQR: interquartile range, ISS: Injury severity score; min: 
minimum value, max: maximum value; GCS: Glasgow coma scale; GFAP: Glial Fibrillary Acidic Protein; UCHL1: Ubiquitin carboxy-terminal hydrolase L1; S100B: S100 
Calcium-binding protein B. *1 in both samples

Unselected trauma cohort Sub-cohort 1 Sub-cohort 2

GFAP/UCH-L1 
positive S100B 
negative

S100B positive 
GFAP/UCH-L1 
negative

GFAP/UCH-L1 
positive S100B 
negative

S100B positive 
GFAP/UCH-L1 
negative

GFAP/UCH-L1 
positive S100B 
negative

S100B positive 
GFAP/UCH-L1 
negative

N 23 16 12 2 6 2

Age years, 
mean ± SD

47.6 ± 18.6 35.2 ± 12.8 49.6 ± 22.7 33.0 ± 15.6 43.5 ± 23.9 33.0 ± 15.6

Sex (fm/m) 9/14 7/9 5/7 0/2 5/1 0/2

Time from injury 
to admission, mins 
median (IQR)

77.0 (42 to 115) 42.5 (31 to 68) 77 (42 to 83) 44.5 (38 to 51) 54.5 (39 to 79) 44.5 (38 to 51)

Admission 
delay > 6 h

3 0 1 0 0 0

Admission 
delay > 12 h

2 0 1 0 0 0

GCS, mean ± SD 
(min–max)

13.7 ± 3.3 (3–15) 14.9 ± 0.25 (14–15) 12.6 ± 4.4 (3–15) 14.5 ± 0.7 (14–15) 14.8 ± 0.4 (14–15) 14.5 ± 0.7 (14–15)

ISS, mean ± SD 
(min–max)

10.7 ± 10.5 (1–29) 3.9 ± 4.3 (1–13) 9.9 ± 10.2 (1–25) 1* 3.7 ± 4.4 (1–12) 1 ± 0 (1 to 1)

GFAP, ng/L, median 
IQR)

47.7 (25.2 to 133.2) 15.5 (13.1 to 219) 61.1 (43.6 to 120.7) 19.3 (17.1 to 21.4) 47.2 (40.5 to 91.6 19.3 (17.1 to 21.4)

UCHL1, ng/L, 
median (IQR)

390.6 (180.3 
to 658.1)

292.8 (254.4 
to 362.1)

224.3 (176.6 
to 362.2)

339.1 (282.2 
to 395.9)

217.5 (180.3 
to 390.6)

339.1 (282.2 to 395.9)

S100B, µg/L, 
median (IQR)

0.056 (0.043 
to 0.075)

0.214 (0.131 
to 0.406)

0.057 (0.045 
to 0.065)

0.159 (0.104 
to 0.215)

0.059 (0.054 
to 0.068)

0.159 (0.104 to 0.215)

Head trauma 
in chart

12 2 12 2 6 2

Head-CT lesion 2 0 2 0 0 0
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to clinical biomarker use. The few misclassified patients 
had biomarker levels close to the decision cut-offs, and 
the two patients with positive head-CT that were missed 
by S100B in the unselected trauma cohort and the sub-
cohort 1 were excluded by the applied criteria for the 
sub-cohort 2. Our results therefore demonstrate a high 
level of agreement between S100B and GFAP/UCH-L1 
when used according to their indication. Despite consid-
erable research evaluating S100B and GFAP/UCH-L1, a 
direct comparison between prior studies is hampered by 
differences in cohorts, sample times, cutoffs, serum vs 
plasma, and assay used [14, 16, 31, 32]. To allow a more 
direct comparison with prior studies, we evaluated the 
diagnostic performance of S100B and GFAP/UCH-L1 
separately in all cohorts. In sub-cohort 2, S100B had a 
sensitivity and a negative predictive value as reported 
in prior studies [7, 8, 31, 33, 34]; however, when applied 
more broadly among the unselected trauma cohort and 
the sub-cohort 1, the performance declined. By contrast, 
GFAP/UCH-L1 had a sensitivity and a negative predic-
tive value of 100% across all three cohorts, which is also 
comparable to prior studies [14, 17, 31]. This difference in 
diagnostic performance seems to result from assay sen-
sitivity to extracranial injuries, thereby highlighting the 
broader applicability of GFAP/UCH-L1 compared with 
S100B. In terms of specificity, we observed relatively low 
levels for both S100B and GFAP/UCH-L1. Prior studies 
report specificities for S100B ranging from 47 to 53% [8, 
35] and for GFAP/UCH-L1 from 28.8 to 39% [17, 18, 36]. 
Thus, these tests are associated with a high number of 
false positives, which may explain some of the challenges 
with clinical implementation of S100B [8]. It is, however, 
well established that S100B and GFAP levels increase 
with age [37], and establishment of age-specific cutoffs 
would likely improve the performance of these biomark-
ers substantially.

The SNC guidelines for management of head trauma 
recommend use of S100B to determine the need for 
head-CT in patients with low-risk mTBI i.e. GCS 14 or 
GCS 15 and suspected/confirmed loss of consciousness 
and/or ≥ 2 vomiting episodes within 6 h from injury [7]. 
Yet, non-adherence to the SNC guidelines results in an 
unacceptably low sensitivity [6, 8, 38], and is associated 
with unnecessary head-CT, increased health care costs 
and prolonged emergency department time [8, 39, 40]. 
The causes of non-adherence is not clear, but might be 
associated with clinical judgment, anamnestic uncer-
tainty, unclear symptoms, prolonged analysis time of 
serum tests, and the extracranial sources of S100B and 
the short half-life of S100B, which lower the number of 
patients suitable for testing [20, 39]. Despite being recom-
mended in the SNC guidelines, S100B has not achieved 
FDA approval. The FDA has, however, approved GFAP/

UCH-L1 for clinical use, and the Spanish and French 
guidelines recommend GFAP/UCH-L1 for clinical use as 
it may offer a feasible alternative to S100B [17, 19–21]. It 
may be used for up to 12 h after injury, it is not suscepti-
ble to extracranial injuries, and it is a plasma-based anal-
ysis, which can be performed more rapidly by the clinical 
laboratory. Whether these improvements will lead to 
increased use remains unknown and require further 
studies. Yet, our data clearly suggest that GFAP/UCH-L1 
can safely be incorporated as part of clinical care which 
will facilitate progression of studies to evaluate if this will 
translate into clinical and economic benefits.

The necessity of a combination test with GFAP and 
UCH-L1 compared to a single test with S100B remains 
controversial [14]. Some studies suggest that GFAP and 
UCH-L1 complement each other for the detection of 
traumatic intracranial lesions [41, 42], while others favor 
GFAP or UCH-L1 alone for good diagnostic performance 
[13–15, 36, 41, 43, 44]. In our study, positivity depended 
on GFAP or UCH-L1, and not on GFAP or UCH-L1 
alone. These controversies might stem from biomarker 
kinetics, and therefore critically dependent on research 
setting and intended use of the biomarkers. While UCH-
L1 peaks immediately after injury and decline rapidly, 
GFAP peaks later after injury and remains elevated for 
a prolonged period of time [16, 45]. Thus, sampling later 
after injury would tend to favor the GFAP component 
and vise-versa [46, 47]. The decision to exclude one of the 
assay components should therefore be made with careful 
respect to the clinical setting, and for most Scandinavian 
centers with mixed populations, the combination assay 
would offer the safer alternative.

A key aspect in comparing TBI biomarker studies is the 
assay used. GFAP and UCH-L1 are complex proteins that 
are expressed in several isoforms, and they may therefore 
be differentially detected by the assay available [48, 49]. 
Use of different assays can therefore be of great impor-
tance for the obtained results and their interpretation. 
To provide comparability of data to the literature, we 
compared GFAP and UCH-L1 measured on the Alinity-
I platform and the Simoa platform [50]. This revealed a 
low concordance with the Alinity-I platform measuring 
GFAP levels on average 65% lower and UCH-L1 levels 
84% higher than the Simoa platform. Such differences 
between assays are commonly and frequently encoun-
tered, especially at early stages of development. It dem-
onstrates the need for caution in comparison of studies 
using different methods as well as the need for assay-spe-
cific cutoffs.

There are limitations to the study that needs to be taken 
into consideration. Most importantly, the cohort investi-
gated was collected for biomarker studies, but not spe-
cifically for this study [23, 24]. The population therefore 
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consisted of patients admitted to the trauma center, but 
excluded patients admitted to the emergency department 
who would also be candidates for GFAP/UCH-L1 evalu-
ation. Yet, the primary endpoint was classification agree-
ment, which is best done including the entire spectrum 
of disease, and the secondary endpoint showed increased 
biomarker performance when the cohort characteristics 
approached that of clinical biomarker use. The classifi-
cation of patients in the two sub-cohorts was based on 
a retrospective chart review and we cannot exclude the 
possibility of some classification bias and inaccuracies 
regarding the secondary endpoint. It would, however, be 
equal for S100B and GFAP/UCH-L1, and therefore have 
limited impact on the study. Due to these potential risks 
of classification problems, we also refrained from group-
ing of the mTBI patients into SNC risk-groups. Finally, 
the interpretation of Cohens Kappa has been debated as 
to which levels should be considered high. However, the 
levels reached in our study was very close to the maxi-
mum obtainable value and are indisputably very high.

Conclusions
The S100B single-test and the GFAP/UCH-L1 combina-
tion-test have almost perfect agreement for classification 
of patients with mTBI. Both assays have sensitivities and 
negative predictive values for detecting traumatic intrac-
ranial lesions of 100% in our cohort of adult Scandinavian 
trauma patients. These data support GFAP/UCH-L1 as 
a feasible alternative to S100B for evaluation of patients 
with mTBI.
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